59 research outputs found

    Improved Bounds on Information Dissemination by Manhattan Random Waypoint Model

    Full text link
    With the popularity of portable wireless devices it is important to model and predict how information or contagions spread by natural human mobility -- for understanding the spreading of deadly infectious diseases and for improving delay tolerant communication schemes. Formally, we model this problem by considering MM moving agents, where each agent initially carries a \emph{distinct} bit of information. When two agents are at the same location or in close proximity to one another, they share all their information with each other. We would like to know the time it takes until all bits of information reach all agents, called the \textit{flood time}, and how it depends on the way agents move, the size and shape of the network and the number of agents moving in the network. We provide rigorous analysis for the \MRWP model (which takes paths with minimum number of turns), a convenient model used previously to analyze mobile agents, and find that with high probability the flood time is bounded by O(NlogM(N/M)log(NM))O\big(N\log M\lceil(N/M) \log(NM)\rceil\big), where MM agents move on an N×NN\times N grid. In addition to extensive simulations, we use a data set of taxi trajectories to show that our method can successfully predict flood times in both experimental settings and the real world.Comment: 10 pages, ACM SIGSPATIAL 2018, Seattle, U

    From mobile phone data to the spatial structure of cities

    Get PDF
    Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral data but also provide information about the structure of cities and their dynamical properties. In this article, we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish metropolitan areas. We first define an urban dilatation index which measures how the average distance between individuals evolves during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most crowded places in the city. We propose a parameter free method to detect them and to test the robustness of our results. The number of these hotspots scales sublinearly with the population size, a result in agreement with previous theoretical arguments and measures on employment datasets. We study the lifetime of these hotspots and show in particular that the hierarchy of permanent ones, which constitute the "heart" of the city, is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows us to distinguish different categories of cities, from monocentric and "segregated" where the spatial distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is much more important. These results point towards the possibility of a new, quantitative classification of cities using high resolution spatio-temporal data.Comment: 14 pages, 15 figure

    Uncovering the spatial structure of mobility networks

    Get PDF
    The extraction of a clear and simple footprint of the structure of large, weighted and directed networks is a general problem that has many applications. An important example is given by origin-destination matrices which contain the complete information on commuting flows, but are difficult to analyze and compare. We propose here a versatile method which extracts a coarse-grained signature of mobility networks, under the form of a 2×22\times 2 matrix that separates the flows into four categories. We apply this method to origin-destination matrices extracted from mobile phone data recorded in thirty-one Spanish cities. We show that these cities essentially differ by their proportion of two types of flows: integrated (between residential and employment hotspots) and random flows, whose importance increases with city size. Finally the method allows to determine categories of networks, and in the mobility case to classify cities according to their commuting structure.Comment: 10 pages, 5 figures +Supplementary informatio

    Flooding through the lens of mobile phone activity

    Get PDF
    Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The representativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.Comment: Submitted to IEEE Global Humanitarian Technologies Conference (GHTC) 201
    corecore